Electronic structure and stability of semiconducting graphene nanoribbons.
نویسندگان
چکیده
We present a systematic density functional theory study of the electronic properties, optical spectra, and relative thermodynamic stability of semiconducting graphene nanoribbons. We consider ribbons with different edge nature including bare and hydrogen-terminated ribbons, several crystallographic orientations, and widths up to 3 nm. Our results can be extrapolated to wider ribbons providing a qualitative way of determining the electronic properties of ribbons with widths of practical significance. We predict that in order to produce materials with band gaps similar to Ge or InN, the width of the ribbons must be between 2 and 3 nm. If larger bang gap ribbons are needed (like Si, InP, or GaAs), their width must be reduced to 1-2 nm. According to the extrapolated inverse power law obtained in this work, armchair carbon nanoribbons of widths larger than 8 nm will present a maximum band gap of 0.3 eV, while for ribbons with a width of 80 nm the maximum possible band gap is 0.05 eV. For chiral nanoribbons the band gap oscillations rapidly vanish as a function of the chiral angle indicating that a careful design of their crystallographic nature is an essential ingredient for controlling their electronic properties. Optical excitations show important differences between ribbons with and without hydrogen termination and are found to be sensitive to the carbon nanoribbon width. This should provide a practical way of revealing information on their size and the nature of their edges.
منابع مشابه
Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملEmergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
Using density functional theory calculations, we show that recently synthesized carbon nanocomposites of graphene nanoribbons encapsulated in a carbon nanotube (GNR@CNT) possess rich emergent electronic and magnetic properties that offer new functionality and tunability and display systematic trends that are sensitive to the matchup of constitutive GNRs and CNTs. The encapsulation of H-passivat...
متن کاملEdge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties
Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of a half-semiconducting state, with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 6 12 شماره
صفحات -
تاریخ انتشار 2006